US009436460B2

United States Patent

(12) (10) Patent No.: US 9,436,460 B2
Bantupalli 45) Date of Patent: Sep. 6, 2016
(54) REGRESSION ALERTS 8,276,126 B2 9/2012 Farnham et al.
8,407,670 B2 3/2013 Hegde et al.
: . ; ; ; 2003/0145281 Al* 7/2003 Thames et al. ............... 715/513
(71)  Applicant: Icntemat".’nal B“s“ﬁsg[;c{‘;ges 2005/0166094 Al*  7/2005 Blackwell ....... GOGF 11/3664
orporation, Armonk, (as) 714/38.14
2005/0235012 Al* 10/2005 Harry et al. .....cccoeeene 707/203
(72) Inventor: Sairam Bantupalli, Bangalore (IN) 2006/0236301 Al* 10/2006 Minium et al. . ... 717/101
2006/0282479 Al* 12/2006 Johnson et al. ............. 707/203
(73) Assignee: International Business Machines %8}8;882;3‘9‘41‘ ﬁi* égg}g ggatrwtal let al. SR
0 est et al. ...l
Corporation, Armonk, NY (US) 2010/0095276 AL* 42010 Otavi ... GOGF 11/3672
. . . . . 717/125
(*) Notice:  Subject to any disclaimer, the term of this 2014/0164208 Al* 6/2014 Mueller et al. ............... 705/37
patent is extended or adjusted under 35 2014/0282411 Al* 9/2014 Liemandt et al. ............ 717/124
U.S.C. 154(b) by 154 days. 2014/0325480 Al* 10/2014 Bhagavatula ....... GOGF 11/3688
717/124
. 2014/0344557 Al* 112014 Bartlow et al. .............. 712/236
(21)  Appl. No.: 14/065,831 2014/0372983 Al* 122014 Presley et al. ...occco..... 717/124
(22) Filed: Oct. 29, 2013 OTHER PUBLICATIONS
(65) Prior Publication Data Biswas, et al.,, “Regression Test Selection Techniques: A Survey”,
US 2015/0121333 Al Apr. 30. 2015 Informatica 35 (2011) 289-321, <http://www.cse.ohio-state.edu/
pr- 2%, ~biswass/files/informaticasurvey.pdf>.
(51) Int. CL (Continued)
GO6F 9/44 (2006.01)
G06Q 10/10 (2012.01) Primary Examiner — Tuan Vu
(52) US. CL (74) Attorney, Agent, or Firm — Alessandra A. Suuberg
CPC ..o GO6F 8/71 (2013.01); GO6Q 10/101
(2013.01)  (s7) ABSTRACT
(58) Field of Classification Search . . L
CPC ... . GOGF 8/65; GOGF 8/71; GOGF 8/73; Embodiments of the present invention include a method,
GOGF 11/362; GOGF 11/3672; GOGE 11/368; computer program product, and system for generating an
GOGF 11/3688; GOGF 11/3684; GOGF alert as to a potential regression. In one embodiment, a
707/99954; GOGF 9/4443; GOGF 11/3664 server computer system receives an instruction from a first
See application file for complete search history. location to associate a first changeset with a record, wherein
the first changeset has associated metadata, and associates
(56) References Cited the first changeset with the first record. The server computer

U.S. PATENT DOCUMENTS

7,100,195 B1* 8/2006 Underwood .......... GOG6F 9/4443
707/999.009

7,711,992 B2 5/2010 Coulter et al.

8,117,598 B2 2/2012 Johnson et al.

8,276,123 Bl 9/2012 Deng et al.

114
\l\

system receives an instruction from a second location to
modify the first changeset by merging a second changeset
with the first changeset and sends an alert to the second
location to indicate that merging the changeset may cause a
regression.

10 Claims, 4 Drawing Sheets

RECEIVE INSTRUCTION TC ASSOCIATE
RECORD A WITH CHANGESET A

RECEIVE INSTRUCTION TO DELIVER
CHANGESET B TO REPOSITORY

CHANGESET
300

CHANGE LIST CHANGESET METADATA
il 320

CHANGE 1
312A

CHANGE 2
3128

NODE IDENTIFICATION
322
CHANGED FILES
324

REGRESSION ALERT
RECORD

326
CHANGE N
312N

SEND ALERT THAT DELIVERY OF
CHANGESET B WILL MODIFY CHANGESET
A, WHICH IS ASSOCIATED WITH RECORD A

DELIVER
CHANGESET B



US 9,436,460 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Garg, Arun, “Finding Highly Impacted Defects for any New Code
Change based on the Historical Data Daemon”, An IP.com Prior Art
Database Technical Disclosure, IP.com No. IPCOM000227396D,
IP.com Electronic Publication: May 6, 2013, © & TM 2013 Symatec
Corporation, All  rights reserved, <http://ip.com/TPCOM/
000227396>, pp. 1-7.

“A method to evaluate the risk of source code changes”, An IP.com
Prior Art Database Technical Disclosure, Authors et. al.: IBM,
Original Publication Date: Mar. 19, 2009, IPcom No.
IPCOMO000180854D, IP.com Electronic Publication: Mar. 19, 2009,

<http://ip.com/TPCOM/000 180854>, pp. 1-7.

“Method and System to Predict Software Change Risk”, An IP.com
Prior Art Database Technical Disclosure, Authors et. al.: Disclosed
Anonymously, IP.com No. IPCOM000208877D, IP.com Electronic
Publication: Jul. 21, 2011, <http://ip.com/TPCOM/000208877>, pp.
1-3.

“A system to suggest regression test cases based on indirect change
set and component references”, An IP.com Prior Art Database
Technical Disclosure, Authors et. al.: Disclosed Anonymously,
IP.com No. IPCOM000227936D, IP.com Electronic Publication:
May 29, 2013, <http:/ip.com/IPCOM/000227936>, pp. 1-5.
Bantupalli, Sairam, “Regression Alerts”, U.S. Appl. No.
14/296,485, filed Jun. 5, 2014, 24 pages.

IBM Appendix P, list of patents or patent applications treated as
related, Feb. 16, 2016, 2 pages.

* cited by examiner



U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,436,460 B2

ﬂ1oo

SERVER COMPUTER SYSTEM
110

SOURCE CONTROL SYSTEM
112

REGRESSION ALERT PROGRAM
114

DEVELOPER COMPUTER DEVELOPER COMPUTER
SYSTEM SYSTEM

130 132

FIG. 1



U.S. Patent

114
\\

Sep. 6, 2016

RECEIVE INSTRUCTIONS TO DELIVER
CHANGESET A TO REPOSITORY

¢

SEND PROMPT TO ASSOCIATE
RECORD A WITH CHANGESET A

'

RECEIVE INSTRUCTION TO ASSOCIATE

Sheet 2 of 4

US 9,436,460 B2

~— 202

~— 204

~— 206

RECORD A WITH CHANGESET A

'

ASSOCIATE RECORD A
WITH CHANGESET A

'

RECEIVE INSTRUCTION TO DELIVER
CHANGESET B TO REPOSITORY

212

DETERMINE
|F CHANGESET B CONFLICTS WITH
CHANGESET A

~— 208

~— 210

NO

SEND ALERT THAT DELIVERY OF

CHANGESET B WILL MODIFY CHANGESET |~ 216
A, WHICH IS ASSOCIATED WITH RECORD A Y
218
OVERRIDE N YES - 214
ALERT? ! (
DELIVER
CHANGESET B

FIG. 2




U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,436,460 B2

CHANGESET
300
CHANGE LIST CHANGESET METADATA
310 320
CHANGE 1 NODE IDENTIFICATION
312A 322
CHANGE 2 CHANGED FILES
312B 324
REGRESSION ALERT
RECORD
326
CHANGE N
312N

FIG. 3



U.S. Patent Sep. 6, 2016 Sheet 4 of 4 US 9,436,460 B2
400
4§6 408
MEMORY ®
41\4 PERSISTENT
STORAGE
RAM SOURCE
40\4 CONTROL
| /1 SYSTEM
CACHE 1121
PROCESSOR(S) > REGRESSION
416 ALERT
PROGRAM
420 412 — s
\ N | 410 114
11O 4
DISPLAY [+ INTERFACE(S) COMMUNICATIONS UNIT
418
Ny
EXTERNAL
DEVICE(S)

FIG. 4



US 9,436,460 B2

1
REGRESSION ALERTS

FIELD OF THE INVENTION

The invention relates generally to the field of computer
software development and more specifically to alerting users
of potential regressions in the software.

BACKGROUND

The development and updating of software programs
typically involves multiple iterations of a number of sections
of code. As a program develops and undergoes changes,
sections of code are often modified by several developers
multiple times. A program called the source control system
maintains a repository, where the most current versions of
the program are stored. A developer may “check out” a copy,
called a working copy, and make alterations to the code. The
developer must then merge the working copy with the
repository copy in order to update the software. Addition-
ally, multiple developers may be working on the same file at
the same time. This leads to multiple versions of a given file,
each with different changes which may be incompatible with
other developers’ changes.

As the software changes, the developers must ensure that
their modifications to the program have not resulted in the
introduction of new software bugs, called regressions, to
previously functioning software. Because of the high
demands of consumers, minimizing regressions through
multiple iterations of a software program can be an expen-
sive part of software development.

SUMMARY

Embodiments of the present invention include a method,
computer program product, and system for generating an
alert as to a potential regression. In one embodiment, a
server computer system receives an instruction from a first
location to associate a first changeset with a record, wherein
the first changeset has associated metadata. The server
computer system associates the first changeset with the first
record. The server computer system receives an instruction
from a second location to modify the first changeset by
merging a second changeset with the first changeset. The
server computing system sends an alert to the second
location to indicate that merging the first and second chang-
esets may cause a regression.

DESCRIPTION OF THE SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is a functional block diagram depicting a software
configuration management environment, in accordance with
an embodiment of the present invention.

FIG. 2 is a flowchart depicting operational steps of a
regression alert program, in accordance with an embodiment
of the present invention.

FIG. 3 is a block diagram depicting a changeset file,
including associated metadata, in accordance with an
embodiment of the present invention.

FIG. 4 depicts a block diagram of internal and external
components of the server computer system executing the
regression alert program in the software configuration man-
agement environment of FIG. 1, in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method

10

20

25

30

35

40

45

50

55

60

65

2

or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer-readable medium(s) having com-
puter-readable program code/instructions embodied thereon.

Any combination of computer-readable media may be
utilized. Computer-readable media may be a computer-
readable signal medium or a computer-readable storage
medium. A computer-readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, or device, or any suitable combination of the forego-
ing. More specific examples (a non-exhaustive list) of a
computer-readable storage medium would include the fol-
lowing: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer-readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer-readable signal medium may be any computer-
readable medium that is not a computer-readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object-oriented programming language such as
Java®, Smalltalk, C++ or the like and conventional proce-
dural programming languages, such as the “C” program-
ming language or similar programming languages. The
program code may execute entirely on a developer’s com-
puter, partly on the developer’s computer, as a stand-alone
software package, partly on the developer’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the developer’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations



US 9,436,460 B2

3

and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer-imple-
mented process such that the instructions, which execute on
the computer, or other programmable apparatus, provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The invention will now be described in detail with refer-
ence to the Figures. FIG. 1 is a functional block diagram
depicting a software configuration management environ-
ment, generally designated 100, in accordance with an
embodiment of the present invention. Software configura-
tion management environment 100 consists of a number of
computer systems being connected through network 120.
Software configuration management environment 100
includes server computer system 110, developer computer
system 130, and developer computer system 132.

Server computer system 110 may be a specialized com-
puter server, a desktop computer, a laptop computer, a tablet
computer, a nethook computer, a personal computer (PC), or
any other computer system known in the art. In certain
embodiments, server computer system 110 represents a
computer system utilizing clustered computers and compo-
nents that act as a single pool of seamless resources when
accessed through network 120, as is common in data centers
with cloud computing applications. In general, server com-
puter system 110 is representative of any programmable
electronic device or combination of programmable elec-
tronic devices capable of reading machine readable program
instructions and communicating with other computing
devices via network 120. Exemplary components of a server
computer system 110 are described in greater detail with
regard to FIG. 4.

In various embodiments of the present invention, devel-
oper computer systems 130 and 132 can each respectively be
a laptop computer, a tablet computer, a netbook computer, a
personal computer (PC), a desktop computer, a personal
digital assistant (PDA), a smartphone, or a programmable
electronic device capable of communicating with server
computer system 110 via network 120. In certain embodi-
ments, developer computer systems 130 and 132 can each
represent a computer system utilizing clustered computers
and components that act as a single pool of seamless
resources when accessed through network 120, as is com-
mon in data centers with cloud computing applications.

10

15

20

25

30

35

40

45

50

55

60

65

4

In general, network 120 can be any combination of
connections and protocols that will support communications
between server computer system 110 and developer com-
puter systems 130 and 132. Network 120 can include, for
example, a local area network (LAN), a wide area network
(WAN) such as Internet, a cellular network, or any combi-
nation of the preceding, and can further include wired,
wireless, and/or fiber optic connections.

Source control system 112 resides on server computer
system 110 and manages changes to documents, computer
programs, websites, and other collections of information.
Source control system 112 may be a stand alone application
or an application embedded in various types of software.
Source control system 112 maintains a record and copy of
each version of the document or computer program being
edited in a central location called a repository. Source
control system 112 holds a current copy of the document
while multiple working copies are being altered by devel-
opers in order to ensure that previous versions of software
are kept while future versions are being developed. In an
alternative embodiment, source control system 112 may be
included on developer computer systems 130 and 132.

Source control system 112 includes regression alert pro-
gram 114 in an embodiment of the present invention.
Regression alert program 114 allows developers to associate
a record, such as a text, with a particular changeset. A
changeset is an atomic collection of changes to files in a
repository. It contains all recorded differences between the
working copy and the parent file in the repository. A
changeset also has associated metadata. This metadata may
include, for example, the node id (i.e. the identifying infor-
mation of the parent file), the list of change files, and the
information about who made the changes, why, and when. A
record is an additional piece of information, for example in
the form of a text, that regression alert program 114 asso-
ciates with the changeset. The record may, for example,
become part of the metadata associated with the changeset.
Once a changeset has a record associated with it, regression
alert program 114 can search past changesets for those that
are conflicting and have such records associated with them.
A list of these changesets can then be generated for the
developer to review and ensure that a current changeset does
not conflict with past changesets in a way that will generate
regressions.

Server computer system 110 includes source control sys-
tem 112. Source control system 112 includes regression alert
program 114. Source control system 112 maintains the
repository, which stores past versions of a document cur-
rently being edited by developers. Developers access the
repository on server computer system 110 using developer
computer systems 130 and 132 via network 120. Developers
can check out repository copies via network 120, make
changes to those copies, and then merge the changed copies
with the repository copy via network 120. Regression alert
program 114 provides a mechanism for ensuring that merg-
ing the changed copies does not disrupt the functionality of
unaltered portions of the repository copy.

FIG. 2 is a flowchart depicting operational steps of
regression alert program 114 in accordance with an embodi-
ment of the present invention. Regression alert program 114,
which may be incorporated into source system 112, receives
an instruction from a developer to deliver a changeset A to
the repository (step 202). The repository is the central
database where all versions of the software being developed
are stored. When a developer checks a file out of the
repository and makes changes, he must commit or merge
those changes into the repository copy. These changes are



US 9,436,460 B2

5

embodied in the changeset. For example, a developer work-
ing on a software upgrade may check out a particular file
associated with that software for updating. The developer
can alter the checked out copy of the file. In order to preserve
the changes in the repository, the developer must then
commit the changeset representing those changes with the
repository.

Regression alert program 114 sends a prompt to the
developer to associate a record with changeset A (step 204).
When a developer attempts to, for example, merge a chang-
eset to a file in the repository, regression alert program 114
will provide that developer with an option to associate the
changeset with a record. The record may be, for example, a
string of text stored in the metadata of the changeset. The
record may contain, for example, a list of the changes
included in the change or a particular test case that must be
verified in order to avoid future regressions in the file. Test
cases are common tools used in regression control to ensure
that a particular function of the file is working properly. A
large database of test cases is commonly maintained for a
given piece of software, which is often called a test suite.
Test suites can contain a large number of test cases making
constant verification of the entire test suite with each soft-
ware upgrade both time consuming and expensive. In
another embodiment, the record can contain a complete use
case that the file must be able to complete in order to ensure
that it is functioning properly. A use case is a list of steps that
define interactions between an actor and a system to achieve
a goal. For example, the actor can be a human user and the
system is the program file.

Regression alert program 114 receives an instruction from
a developer to associate record A with changeset A (step
206). The developer may choose to enter a record associated
with the changeset currently being committed to the reposi-
tory. Regression alert program 114 associates record A with
changeset A (step 208). This association links the record
with the changeset so that the record alerts any subsequent
developer who attempts to enter a new set of changes which
modifies changeset A. For example, when a subsequent
developer attempts to commit a new changeset which affects
the file with which the record is associated, the subsequent
developer will receive a notification that the new changeset
may cause a regression in the file.

Regression alert program 114 receives an instruction from
a subsequent developer to deliver changeset B to the reposi-
tory (step 210). Because software, for example, typically
goes through multiple versions and iterations, both before
and after release, many developers may work on individual
sections of the program. When multiple developers are
working on a single file or piece of software code, each one
may remain ignorant of the changes made by the other
developers. Therefore, when each developer attempts to
merge or commit his or her changes, those changes may not
function properly when merged with the changes of other
developers. Regression alert program 114 receives the sub-
sequent changesets, changeset B in the embodiment
depicted in FIG. 2, after receiving changeset A and attempts
to merge them together to create a new version of the
repository file.

Regression alert program 114 determines if the changeset
B may conflict, i.e. generate a regression, with a previous
changeset that has a record associated with it, such as
changeset A (decision block 212). Regression alert program
114 runs a search of, for example, the metadata of previous
changesets that may have records associated with them
conveying information regarding the changeset. If no poten-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

tial conflicts exist (decision block 212, no branch), then
regression alert program delivers changeset B to the reposi-
tory in step 214.

If regression alert program 114 determines that there is a
potential conflict between changeset B and changeset A
(decision block 212, yes branch), by, for example, locating
previous changesets which modify the same file and have
records associated with them, then regression alert program
114 sends an alert to the developer of changeset B that
delivering changeset B will modify changeset A, which is
associated with record A, in step 216.

Regression alert program 114 then determines, based on
developer input, such as a pop-up window with an option to
override the alert, whether to override the alert (decision
block 218). If the developer chooses to override the alert
(decision block 218, yes branch), then regression alert
program delivers changeset B to the repository, in step 214.
If the developer chooses not to override the alert (decision
block 218, no branch), then regression alert program 114
does not deliver changeset B to the repository and regression
alert program ends operation.

FIG. 3 is a block diagram depicting a changeset file 300,
in accordance with an embodiment of the present invention.
Changeset file 300 is a sample changeset, such as changeset
A in the illustrative embodiment described above. Changeset
file 300 includes change list 310. Change list 310 is a
complete record of all of the changes included in the
changeset to be made to the repository copy. Change list 310
includes a number of changes including change 1 312A,
change 2 312B to change N 312N (hereinafter changes 312).
Changes 312 can represent any changes between the reposi-
tory file and the working copy prepared for merging, such as
code alterations, addition of files, or removal of files from
the repository copy.

Changeset file 300 includes changeset metadata 320.
Changeset metadata 320 includes information associated by
the user with the change list for future reference. For
example, changeset metadata 320 includes node identifica-
tion 322, a list of changed files 324, and regression alert
record 326. Regression alert record 326 can be, for example,
a list of test cases that must be run in order to verify that
changeset file 300 does not have a regression as a result of
subsequent changes.

FIG. 4 depicts a block diagram of respective internal and
external components of server computer system 110 and
developer computer systems 130 and 132, generally desig-
nated 400, in accordance with an illustrative embodiment of
the present invention. It should be appreciated that FIG. 4
provides only an illustration of one implementation and does
not imply any limitations with regard to the environments in
which different embodiments may be implemented. Many
modifications to the depicted environment may be made.

Server computer system 110 and developer computer
systems 130 and 132 include respective communications
fabric 402, which provides communications between com-
puter processor(s) 404, memory 406, persistent storage 408,
communications unit 410, and input/output (I/O) interface(s)
412. Communications fabric 402 can be implemented with
any architecture designed for passing data and/or control
information between processors (such as microprocessors,
communications and network processors, etc.), system
memory, peripheral devices, and any other hardware com-
ponents within a system. For example, communications
fabric 402 can be implemented with one or more buses.

Memory 406 and persistent storage 408 are computer-
readable storage media. In this embodiment, memory 406
includes random access memory (RAM) 414 and cache



US 9,436,460 B2

7

memory 416. In general, memory 406 can include any
suitable volatile or non-volatile computer-readable storage
media.

Source control system 112 and regression alert program
114 are stored in persistent storage 408 for execution and/or
access by one or more of the respective computer processor
(s) 404 via one or more memories of memory 406. In this
embodiment, persistent storage 408 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 408 can include a solid
state hard drive, a semiconductor storage device, a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM), a flash memory, or any other computer-
readable storage media that is capable of storing program
instructions or digital information.

The media used by persistent storage 408 may also be
removable. For example, a removable hard drive may be
used for persistent storage 408. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that is also part of per-
sistent storage 408.

Communications unit 410, in these examples, provides
for communications with other data processing systems or
devices, including server computer system 110 and devel-
oper computer systems 130 and 132. In these examples,
communications unit 410 includes one or more network
interface cards. Communications unit 410 may provide
communications through the use of either or both physical
and wireless communications links. Source control system
112 and regression alert program 114 may be downloaded to
persistent storage 408 through communications unit 410.

1/O interface(s) 412 allows for input and output of data
with other devices that may be connected to server computer
system 110. For example, I/O interface(s) 412 may provide
a connection to external device(s) 418 such as a keyboard,
a keypad, a touch screen, and/or some other suitable input
device. External device(s) 418 can also include portable
computer-readable storage media such as, for example,
thumb drives, portable optical or magnetic disks, and
memory cards. Software and data used to practice embodi-
ments of the present invention, e.g., source control system
112 and regression alert program 114, can be stored on such
portable computer-readable storage media and can be loaded
onto persistent storage 408 via I/O interface(s) 412. /O
interface(s) 412 also connect to a display 420. Display 420
provides a mechanism to display data to a user and may be,
for example, a computer monitor or an incorporated display
screen, such as is used in tablet computers and smart phones.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the Figures. For example, two blocks

10

15

20

25

30

35

40

45

50

55

60

65

8

shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
What is claimed is:
1. A computer program product embodied in one or more
non-transitory computer-readable storage media for alerting
a developer to a potential regression, the computer program
product comprising:
program instructions to receive, by one or more computer
processors, an instruction from a first location to asso-
ciate a first changeset with a regression alert record,
wherein the regression alert record is stored in metadata
of the first changeset, and wherein the regression alert
record comprises regression-avoidance guidance
authored by a first user at the first location for reference
by a second user at a second location when attempting
to modify the first changeset;
program instructions to receive, by one or more computer
processors, an instruction from the second user at the
second location to modify the first changeset by merg-
ing a second changeset with the first changeset;

program instructions to determine, by one or more com-
puter processors, responsive to receiving the instruction
to merge, based on searching for changesets with
associated regression alert records, that a regression
alert record is associated with the first changeset;

program instructions to send, by one or more computer
processors, an alert to the second user at the second
location to indicate that merging the first and second
changesets may cause a regression, wherein the alert
displays information concerning the existence of the
regression alert record and provides options to override
the alert or take preventative action based on the
guidance authored by the first user at the first location;

program instructions to receive, by one or more computer
processors, an instruction from the second user at the
second location to deliver the second changeset to a
repository, wherein the instruction is based on an
override of the alert or confirmation that preventative
action has been taken; and

program instructions to deliver, by one or more computer

processors, responsive to receiving the instruction
based on overriding the alert or confirming that pre-
ventative action has been taken, the second changeset
to a repository.

2. The computer program product of claim 1, wherein the
regression alert record comprises text stored in the metadata
of the changeset.

3. The computer program product of claim 1, wherein the
alert generates a list of changesets with associated regression
alert records discovered by the search.

4. The computer program product of claim 1, wherein
options to override the alert or take preventative action
based on the guidance authored by the first user at the first
location comprise an option to verify one or more test cases
included in the regression alert record and clear the alert by
confirming that the one or more test cases have been
verified.

5. The computer program product of claim 1, wherein
options to override the alert or take preventative action



US 9,436,460 B2

9

based on the guidance authored by the first user at the first
location comprise an option to verify a use case included in
the regression alert record.
6. A computer system for alerting a developer to a
potential regression, the computer system comprising:
one or more computer processors;
one or more non-transitory computer-readable storage
media; and
program instructions stored on the non-transitory com-
puter-readable storage media for execution by at least
one of the one or more processors, the program instruc-
tions comprising:
program instructions to receive, by one or more com-
puter processors, an instruction from a first location
to associate a first changeset with a regression alert
record, wherein the regression alert record is stored
in metadata of the first changeset, and wherein the
regression alert record comprises regression-avoid-
ance guidance authored by a first user at the first
location for reference by a second user at a second
location when attempting to modify the first chang-
eset;
program instructions to receive, by one or more com-
puter processors, an instruction from the second user
at the second location to modify the first changeset
by merging a second changeset with the first chang-
eset;
program instructions to determine, by one or more
computer processors, responsive to receiving the
instruction to merge, based on searching for chang-
esets with associated regression alert records, that a
regression alert record is associated with the first
changeset;
program instructions to send, by one or more computer
processors, based on determining that a regression
alert record is associated with the first changeset, an

10

15

20

25

30

35

10

alert to the second user at the second location to
indicate that merging the first and second changesets
may cause a regression, wherein the alert displays
information concerning the existence of the regres-
sion alert record and provides options to override the
alert or take preventative action based on the guid-
ance authored by the first user at the first location;

program instructions to receive, by one or more com-
puter processors, an instruction from the second user
at the second location to deliver the second chang-
eset to a repository, wherein the instruction is based
on an override of the alert or confirmation that
preventative action has been taken; and

program instructions to deliver, by one or more com-
puter processors, responsive to receiving the instruc-
tion based on overriding the alert or confirming that
preventative action has been taken, the second
changeset to a repository.

7. The computer system of claim 6, wherein the record
comprises text stored in the metadata of the changeset.

8. The computer system of claim 6, wherein the alert
generates a list of changesets with associated regression alert
records based on the search.

9. The computer system of claim 6, wherein options to
override the alert or take preventative action based on the
guidance authored by the first user at the first location
comprise an option to verify one or more test cases included
in the regression alert record and clear the alert by confirm-
ing that the one or more test cases have been verified.

10. The computer system of claim 6, wherein options to
override the alert or take preventative action based on the
guidance authored by the first user at the first location
comprise an option to verify a use case included in the
regression alert record.

#* #* #* #* #*



